Print

Print


Patient-ready iPS cells?
Posted by Elie Dolgin
[Entry posted at 28th May 2009 05:02 PM GMT]
Comment on this news story

For the first time, human skin cells have been reprogrammed without using 
DNA, according to a study published online today (May 28) in Cell Stem Cell. 
Although further optimization is still required, this new technique, which 
involves only four genetically engineered proteins, could yield the first 
clinic-ready human induced pluripotent stem (iPS) cells.

"This is the first safe method for generating patient-specific stem cells," 
Robert Lanza, chief scientific officer of Advanced Cell Technology (ACT), 
who coauthored the study, told The Scientist. "We now have a way to actually 
go into a patient without the problem of immune rejection."

Last month, a team led by the Scripps Research Institute's Sheng Ding 
reported the first DNA-free method for obtaining iPS cells, although his 
team only published experiments using mouse cells. Ding and his colleagues 
started with the four most commonly used reprogramming factors -- the same 
ones used by Kyoto University's Shinya Yamanaka to create the world's first 
iPS cells in 2006. The researchers then tacked on poly-arginine "tails" onto 
each of the proteins to help them penetrate the cell, purified the proteins 
from E. coli, and reprogrammed mouse fibroblasts with the four recombinant 
proteins in combination with a small molecule called valproic acid (VPA).

Now, Kwang-Soo Kim, a stem cell researcher at Harvard Medical School and 
Korea's CHA University, in collaboration with Lanza, demonstrate that a very 
similar -- but, they argue, safer -- approach also works in human cells. 
Their technique doesn't require any chemical additives, which the 
researchers say could have mutagenic side-effects. Ding, however, called 
this claim "scientifically ignorant," noting that VPA, a histone deacetylase 
inhibitor, is commonly used clinically to treat a range of neurological 
disorders, and all epigenetic modifiers -- regardless of whether they're 
proteins or small molecules -- pose similar risks.

Kim's team independently came up with the idea to fuse arginine repeats onto 
the same four reprogramming factors, but instead of producing the proteins 
in bacteria, the researchers cultured four human cell lines to express each 
of the recombinant proteins. They then repeatedly bathed human skin cells 
with combined total extracts from the cell lines and over the course of 
eight weeks obtained fully reprogrammed stem cells without the addition of 
any other chemicals. The iPS cells passed the standard barrage of tests for 
pluripotency, and microarray analyses demonstrated that these cells 
exhibited similar gene expression profiles to embryonic stem cells.

The new study "validated this protein-based approach for reprogramming," 
Ding told The Scientist. "Now people will be more convinced that this 
[technique] is the way to go," and it should stimulate biochemists and 
protein specialists to improve the methodology, he added. But he said that 
using whole cell extracts instead of purified proteins is "somewhat going 
backwards."

Kim admitted that the method, which was about 10 times less efficient than 
virus-based reprogramming, still requires some optimization, but by omitting 
any foreign chemicals, his approach is simpler and potentially more 
efficient, he argued. The new technique didn't require any additional 
chemical tinkering because mammalian-cultured proteins are in a 
"biologically much more active form" than proteins derived from E. coli, Kim 
said. Once all the kinks are worked out and "once we have the purified 
proteins, we have a perfectly controllable and inducible system," he added.

Unlike previous approaches to reprogramming human cells, which either 
permanently or temporarily modified the cells' DNA, this new protein-based 
method never fiddles with the genome, so it should be near-ready for 
clinical applications, said Lanza, adding that the researchers hope to file 
at least one investigational new drug application with the US Food and Drug 
Administration by mid- to late-2010. Stem Cell & Regenerative Medicine 
International, a joint venture launched last December between Worcester, 
Mass.-based ACT and Soeul-based CHA Biotech, plans to turn the iPS cells 
into blood cells to treat hematopoietic and vascular diseases. ACT, 
meanwhile, has its sights on treating degenerative retinal disorders using 
the technology, he said.

They might be jumping the gun, however. "This [protein-based] method is 
certainly much safer, but we still don't know if this iPS reprogramming 
process will cause subtle epigenetic as well as genetic abnormalities," Ding 
said.

----------------------------------------------------------------------
To sign-off Parkinsn send a message to: mailto:[log in to unmask]
In the body of the message put: signoff parkinsn